Code No: R06-31001-MCA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD MCA-I Semester Regular Examinations, February 2010 DISCRETE STRUCTURES

Time: 3hours
Max.Marks:60

Answer any Five questions
 All questions carry equal marks

1. a) Prove the following tautology
$\{[(p \vee q) \rightarrow r] \wedge(\sim p)\} \rightarrow(q \rightarrow r)$.
b) State the converse, opposite and contra positive to the following:
i) If the triangle is equiangular, then it is equilateral.
ii) If triangle ABC is a right triangle, then $|A B|^{2}+|B C|^{2}=|A C|^{2}$.
2. a) Symbolize the following argument and check for its validities:

Lions are dangerous animals.
There are lions.
Therefore there are dangerous animals.
b) Let the universe consist of all integers and let
$P(x)$: x is a prime.
$\mathrm{Q}(\mathrm{x})$: x is a Positive.
$E(x)$: x is even.
then express each of the following in symbolic form.
If x is prime, then x is positive and not even.
3. a) If $A=\{1,2,3,4\}$ and $R=\{(, 12),(2,3),(3,4),(4,2)\}$ and $S=\{(1,3),(2,4),(4,2),(4,3)\}$ then compute R.S, S.R and R ${ }^{2}$.
b) Prove by pigeon hole principle that in any group of 367 people, there must be at least one pair with the same birthday.
4. a) Show that any semi group S can be extended to a monoid by adjoining an identity element.
b) State and prove the fundamental theorem of homomorphism.
5. a) How many ways are there to pick a man and woman who are not married from 30 married couples.
b) Prove that $[c(n, 0)+c(n, 1)+-----+c(n, n)]^{2}=c(2 n, 0)+c(2 n, 1)+----+c(2 n, 2 n)$.
6. a) Solve the recurrence relation
$a_{n}-7 a_{n-1}+10 a_{n-2}=0$ for $n \geq 2$.
b) Solve the recurrence relation by substitution $a_{n}=a_{n-1}+3^{n}$ where $a_{o}=1$.
7. a) Prove the Euler's theorem for planar graphs.
b) Write the algorithm for finding minimum spanning tree from a give n graph using Kruskal's algorithm. Give an example.
8. a) Determine whether Hamilton cycle exists or not in the following graph using Grinberg theorem.

